FINITE DIMENSIONAL SUBSPACES OF NONCOMMUTATIVE Lp Spaces

نویسنده

  • HUN HEE LEE
چکیده

We prove the following noncommutative version of Lewis’s classical result. Every n-dimensional subspace E of Lp(M) (1 < p < ∞) for a von Neumann algebra M satisfies dcb(E,RC n p ) ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ for some constant cp depending only on p, where 1 p + 1 p = 1 and RC p = [Rn∩ Cn, Rn +Cn] 1 p . Moreover, there is a projection P : Lp(M) → Lp(M) onto E with ‖P‖cb ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ . We follow the classical change of density argument with appropriate noncommutative variations in addition to the opposite trick.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ROSENTHAL’S THEOREM FOR SUBSPACES OF NONCOMMUTATIVE Lp

We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative Lp space for some p > 1. This is a noncommutative version of Rosenthal’s result for commutative Lp spaces. Similarly for 1 ≤ q < 2, an infinite dimensional subspace X of a noncommutative Lq space either contains lq or embeds in Lp for some q < p < 2. The novelty in the noncommutative setting i...

متن کامل

ar X iv : m at h / 03 07 16 9 v 1 [ m at h . FA ] 1 1 Ju l 2 00 3 On Subspaces of Non - commutative L p - Spaces

We study some structural aspects of the subspaces of the non-commutative (Haagerup) Lp-spaces associated with a general (non necessarily semi-finite) von Neumann algebra a. If a subspace X of Lp(a) contains uniformly the spaces lnp , n ≥ 1, it contains an almost isometric, almost 1-complemented copy of lp. If X contains uniformly the finite dimensional Schatten classes S p , it contains their l...

متن کامل

Noncommutative Burkholder/Rosenthal inequalities II: applications

We show norm estimates for the sum of independent random variables in noncommutative Lp-spaces for 1 < p <∞ following our previous work. These estimates generalize the classical Rosenthal inequality in the commutative case. Among applications, we derive an equivalence for the p-norm of the singular values of a random matrix with independent entries, and characterize those symmetric subspaces an...

متن کامل

Stability of low-rank matrix recovery and its connections to Banach space geometry

Abstract. There are well-known relationships between compressed sensing and the geometry of the finite-dimensional lp spaces. A result of Kashin and Temlyakov [20] can be described as a characterization of the stability of the recovery of sparse vectors via l1minimization in terms of the Gelfand widths of certain identity mappings between finitedimensional l1 and l2 spaces, whereas a more recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007